对于除数函数,我们有如下的关系:
当 $x$ 为质数 $p$ 时,有 $\sigma_{k}(p) = 1 + p^k$
$$ \sigma_{k}(x \cdot p) = \begin{cases}\sigma_{k}\left( x\right) \cdot \left( p^{k}+1\right) &(x \not \equiv 0 \mod p) \\ \sigma_{k}\left( x\right) \cdot\left( p^{k}+1\right) -\sigma_{k}\left( x/p\right) \cdot p^{k} &(x \equiv 0 \mod p) \end{cases} $$$$ \sum_{d | x}d = \prod_{i = 1}^n(1 + p_i + p_i^2 + \cdots p_i^{c_i}) $$手动展开其实很显然,就先从 $i = 1$ 开始,选出次数为 $e_1$ 的 $p_1$,然后到 $i = 2$ , 选出次数为 $e_2$ 的 $p_2$ ,依此类推,一直到 $i = n$,组成一个 $d$ ,然后再和其他的 $d$ 相加,得到整个求和的结果。
$$ \sigma_{k}(x)=\sum_{d | x} d^{n} = \prod_{i = 1}^n[1 + (p_i^k) + (p_i^k)^2 + \cdots (p_i^k)^{c_i}] $$$$ S_{p_i}^k(c_i) = 1 + (p_i^k) + (p_i^k)^2 + \cdots (p_i^k)^{c_i} $$$$ \sigma_{k}(x)=\sum_{d | x} d^{n} = \prod_{i = 1}^nS_{p_i}^k(c_i) $$$$ \dfrac{\sigma_{k}(x \cdot p_j)}{\sigma_{k}(x)}= \dfrac{S_{p_1}^k(c_1) \cdot S_{p_2}^k(c_2) \cdots S_{p_j}^k(c_j + 1) \cdots S_{p_n}^k(c_n)}{S_{p_1}^k(c_1) \cdot S_{p_2}^k(c_2) \cdots S_{p_j}^k(c_j) \cdots S_{p_n}^k(c_n)} = \dfrac{S_{p_j}^k(c_j + 1)}{S_{p_j}^k(c_j)} $$$$ \dfrac{\sigma_{k}(x / p_j)}{\sigma_{k}(x)}= \dfrac{S_{p_1}^k(c_1) \cdot S_{p_2}^k(c_2) \cdots S_{p_j}^k(c_j - 1) \cdots S_{p_n}^k(c_n)}{S_{p_1}^k(c_1) \cdot S_{p_2}^k(c_2) \cdots S_{p_j}^k(c_j) \cdots S_{p_n}^k(c_n)} = \dfrac{S_{p_j}^k(c_j - 1)}{S_{p_j}^k(c_j)} $$$$ S(x + 1) - S(x) = q^x = q[S(x) - S(x - 1)] $$$$ 1- \dfrac{\sigma_{k}(x / p_j)}{\sigma_{k}(x)} = \dfrac{S_{p_j}^k(c_j) - S_{p_j}^k(c_j - 1)}{S_{p_j}^k(c_j)} $$$$ p_j- p_j\dfrac{\sigma_{k}(x / p_j)}{\sigma_{k}(x)} = \dfrac{S_{p_j}^k(c_j +1) - S_{p_j}^k(c_j)}{S_{p_j}^k(c_j)} = \dfrac{S_{p_j}^k(c_j + 1)}{S_{p_j}^k(c_j)} - 1 = \dfrac{\sigma_{k}(x / p_j)}{\sigma_{k}(x)} -1 $$$$ \sigma_{k}(x \cdot p) = \sigma_{k}\left( x\right) \cdot\left( p^{k}+1\right) -\sigma_{k}\left( x/p\right) \cdot p^{k} $$