跳过正文
  1. Posts/

对称性在定积分上的使用

·254 字·2 分钟· loading · loading · ·

分类:

数学技巧

标签:

考研 高等数学 定积分 对称性
目录

问题
#

Vy=2πa302π(tsint)(1cost)(1cost)dt V_y = 2 \pi a^3 \int_{0}^{2 \pi} (t - \sin t)(1 - \cos t)(1 - \cos t) \mathop{}\mathrm{d} t

想法
#

显然,展开后求定积分即可。群友们也是这样做的。

但思来想去,总感觉应该有更快的方法,然后发现了这么个做法:

Vy=2πa302π(tsint)(1cost)(1cost)dt=8πa302π(tπsint+π)cos4t2dt=8πa3[02π(tπ)cos4t2dt02πsintcos4t2dt+02ππcos4t2dt] \begin{aligned} V_y &= 2 \pi a^3 \int_{0}^{2 \pi} (t - \sin t)(1 - \cos t)(1 - \cos t) \mathop{}\mathrm{d} t \\ &= 8 \pi a^3 \int_{0}^{2 \pi } (t - \pi - \sin t + \pi) \cos^4 \frac{t}{2} \mathop{}\mathrm{d} t \\ &= 8 \pi a^3 \left[ \int_{0}^{2 \pi } (t - \pi) \cos^4 \frac{t}{2} \mathop{}\mathrm{d} t - \int_{0}^{2 \pi } \sin t \cos^4 \frac{t}{2} \mathop{}\mathrm{d} t + \int_{0}^{2 \pi } \pi \cos^4 \frac{t}{2} \mathop{}\mathrm{d} t \right] \end{aligned} Vy=8π2a302πcos4t2dt \begin{aligned} V_y &= 8 \pi^2 a^3 \int_{0}^{2 \pi } \cos^4 \frac{t}{2} \mathop{}\mathrm{d} t \end{aligned} Vy=16π2a30πcos4t2dt=32π2a30π2cos4udu=32π2a33412π2=6π3a3 \begin{aligned} V_y &= 16 \pi^2 a^3 \int_{0}^{ \pi } \cos^4 \frac{t}{2} \mathop{}\mathrm{d} t \\ &= 32 \pi^2 a^3 \int_{0}^{ \frac{\pi}{2} } \cos^4 u \mathop{}\mathrm{d} u \\ &= 32 \pi^2 a^3 \cdot \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2} \\ &= 6 \pi^3a^3 \end{aligned}

启发
#

0πxf(sinx)dx=π20πf(sinx)dxf(x) 连续 \int_{0}^{\pi} xf(\sin x) \mathop{}\mathrm{d} x = \frac{\pi}{2} \int_{0}^{\pi} f(\sin x) \mathop{}\mathrm{d} x \qquad f(x)\text{ 连续}

从直观上来证明的话,就是因为 sinx\sin x 是关于 π2\displaystyle \frac{\pi}{2} 对称的,而且 f(x)f(x) 是连续的,所以 f(sinx)f(\sin x) 也是关于 π2\displaystyle \frac{\pi}{2} 对称的。而 xπ2x - \displaystyle \frac{\pi}{2} 则关于 (π2,0)\left(\displaystyle \frac{\pi}{2} , 0\right) 对称

g(x)=(xπ2)f(sinx) g(x) = (x - \frac{\pi}{2}) f(\sin x) g(π2+x)=xf(cosx)=[xf(cosx)]=g(π2x) g(\frac{\pi}{2} + x) = x f(\cos x) = -[-xf(\cos x)] = -g(\frac{\pi}{2} - x) 0πxf(sinx)dx=0π(xπ2+π2)f(sinx)dx=π20πf(sinx)dx \int_{0}^{\pi} xf(\sin x) \mathop{}\mathrm{d} x = \int_{0}^{\pi} (x - \frac{\pi}{2} + \frac{\pi}{2})f(\sin x) \mathop{}\mathrm{d} x = \frac{\pi}{2} \int_{0}^{\pi} f(\sin x) \mathop{}\mathrm{d} x